4. Sesquiterpenoids of the Sponge *Dysidea fvagilis* **of the North-Brittany Sea')**

by Graziano Guella, Antonio Guerriero, and Francesco Pietra*

Istituto di Chimica, Universita di Trento, 1-38050 Povo-Trento

(27.VIII.84)

The title sponge **is** shown to contain eight new sesquiterpenoids for which a common, unusual biogenetic origin is postulated. The compounds are shown to be: $(-)(1R^*, 4R^*)$ -3-(3'-furyl)methyl-2-p-menthen-7-yl acetate $((-)$ -8b); two diols separated as the monoacetates $(-)$ - $(1S^*, 4R^*)$ -3- $(3'-fury)$ methyl-1-hydroxy-2-pmenthen-7-yl acetate $((-)-13a)$ and the $(-)-(1R^*A+R^*)-$ epimer $(-)-13b$, the two C(4)-epimeric 4-ethoxy-3-**(1'(7'),2'-p-menthadien-3'-yl)methyl-2-buten-4-olides** ((+)-14a and (-)-14bj, **(-)-3-(3'-furyl)methyl-7-nor-2-p**menthen-1-one ((-)-1 **I),** (-)-(32)- **1-(3'-furyI)-4,8-dimethylnona-3,7-dien-2-y1** acetate **((-)-17),** and *(+)-3-(5'7* seco-2'(**10')-pinen-7'-yljmethylfuran ((+)-15).**

1. Introduction. - Marine sponges of the family Dysideidae [I] contain sesterpenoids *(D.pa1lescen.y* [2a] and *D. herbacea* [2b]), diterpenoids *(D. amblia* [3]), an unusual C₂₇-sterol (*Dysidea* sp. [4]) and, most commonly, sesquiterpenoids of a wide variety of skeleton types.

Recent additions to the sesquiterpenoid list [l] [4] are euryfuran, isolated from *Euryspongia* sp. [5a] $((-)-1)$ or the enantiomeric structure²), which is isomeric to both pallescensin-A $((+)$ -2) and pallescensin-1 $((-)-3)$ isolated from *D. pallescens* [6] [7]), two rearranged drimanes of mixed biogenesis [8], and finally, penlanfuran **((-)-4** or the enantiomeric structure [9]).

I) Presented by *F.P.* as a part of a lecture at the University of Innsbruck on March 15th, 1984.

 $2₁$ Structure **1** has also been proposed for a product of *D. herbacea* of the Great Barrier Reef, Australia [5b]. Though the two products **[Sa]** [Sb] have fairly similar **MS** and 'H-NMR spectra, **we** notice that the optical rotations have opposite sign and different magnitudes.

Penlanfuran was isolated from *D.fragilis* of North-Brittany waters [9], and it is interesting that the same species of Hawaiian waters only contains unrelated sesquiterpenoids [lo]. Actually, penlanfuran has a strict, formal analogy only with the non-furanoid plant product humbertiol **(5) [I** 11. The structurally closest products from sponges are spirodysin **((+)-6),** of uncertain configuration, isolated from *D. herbacea* [12]), furodysin **((+)-7a,** or the enantiomeric structure), and thiofurodysin acetate **(7b,** for which no chiroptical data are available), which have been isolated from a *Dysidea* sp. of Australia [13].

On further examination of our collection of *D. fragilis* of Brittany [9], we have now found and report here eight new sesquiterpenoids for which we propose a common biogenesis which includes also **(-)-4.**

2. Isolations. - The Et,O extract of the sponge was chromatographed on silica gel to get first pure **(+)-15** (0.003% of dry sponge weight, not accounting for major losses due to high volatily) followed in turn by pure $(-)$ -4 (0.3%) [9], a mixture of $(-)$ -17 (0.0023 YO) and **(-)-8b** (0.0025%), a mixture of **(+)-14a** (0.0015%), **(-)-14b** (0.0015%), and **(-)-11** (0.012%), and finally a mixture of epimeric **12.** HPLC allowed us to separate from each other the components of the first two mixtures, whilst **12** were separated as the monoacetates $(-)$ -13a (0.0036%) and $(-)$ -13b (0.003%) .

3. Structural Elucidation. – First are described those compounds whose spectra resemble more those for the already known [9] penlanfuran $((-)-4)^3)$. The furan moiety was always indicated by positive *Ehrlich* tests.

3.1. *Acetoxydihydropenlanfuran* $(= (-)-\{I \mathbb{R}^*, A \mathbb{R}^* \} -3-(3'-FuryI)methyl-2-p-mean$ *then-7-yl Acetate* $(-)$ -8**b**). The MS show the loss of AcOH from M^+ to give m/z 216. As the latter gives the same fragments as M^+ of penlanfuran $((-)-4)$, structure $(-)-8b$ *(Scheme 1)* is suggested. In further support, ¹³C- and ¹H-NMR spectra of $(-)$ -8b and $(-)$ -4 only differ by showing HC(1) and H₂C(7) resonances for the first in place of

HPLC separation.

^{3,} UV (CH,OH): 237 (12000); this data **was** before *(91* inadvertently omitted.

H,C(7) resonances for the latter. Also, H-C(2) of **(-)-8b** is strongly coupled to $H-C(1)$ indicating an axial position for $C(7)$.

The configurational assignment was confirmed by the hydroboration of $(-)$ -4 *(Scheme 1).* HPLC separation of **8a/9a/lOa** from each other and acetylation gave **(-)-9b** where H-C(2) appears as a broad **s** indicating a H-C(2)-C(l)-H dihedral angle of *ca.* 80° and thus equatorial C(7). As synthetic and naturally occurring $(-)$ -8b proved to be identical, $(-)$ -4 and $(-)$ -8b must have the same absolute configuration at $C(4)$.

3.2. *Noroxopenlunfuran* (= *(-)-3- (3'-Furyl)methyl-7-nor-2-p-menthen-l-one* $((-)$ -11)⁴). UV and IR spectra indicate an enone chromophore, whilst MS because of losses of both m/z ⁴³ (isopropyl) and 81 (β -methylenefuran) suggest a structural relationship with $(-)$ -4. In fact, except for the methylidene resonances, ¹³C-and ¹H-NMR spectra of $(-)$ -11 and $(-)$ -4 are practically identical.

The structural attribution was confirmed by methylenation of $(-)$ -11 to give $(-)$ -4 *(Scheme 2)* which also establishes that these two compounds have the same absolute configuration at C(4).

 0 $(R' = H)$ 1) $OsO₄/Py$, 0° ; *2*) NaHSO₁, r.t.; 0 $(R' = H \rightarrow R' = Ac)$ $Ac₂O/Py$; 0 $(R' = Ac)$ HPLC separation.

3.3. $(-)$ - $(1 S^*$, $4 R^*$)-3- $(3'-Furyl)$ methyl-1-hydroxy-2-p-menthen-7-yl *Acetate* $((-)$ -**13a)** *and its (-)-(IR*,4R*)-Epimer* **(-)-13b.** Both **(-)-13a** and **(-)-13b** were obtained as pure compounds on acetylation of the naturally occurring C(1)-epimeric mixture **12** followed by HPLC separation. Both acetates were also obtained by osmylation of **(-)-4** followed by acetylation and HPLC separation *(Scheme 2).* This also establishes the same absolute configuration at $C(4)$ for $(-)-4$, $(-)-13a$, and $(-)-13b$.

 $(-)$ -13a is assigned equatorial OH-C(1) in order to account for higher polarity than the $(-)$ -13b epimer. Consistently, the deshielding effect on ¹³C(5) by the OH group $[15a]$ in $(-)$ -13a relatively to that in $(-)$ -8b, and in turn, in $(-)$ -13b relatively to that in $(-)$ -9b, allow us to assign the relative configurations for both $(-)$ -13a and $(-)$ -13b *(Scheme* 2).

3.4. *Penlunbutenolide* (= (+) *-4-Ethoxy-3-(1' (7') ,2'-p-menthudien-3'-yl)methyl-2 buten-4-olide* $((+)$ - **14a**) *and its More Polar 4-Epipenlanbutenolide* $((-)$ - **14b**). Except for the lack of signals for a furan ring, the **NMR** and **MS** of the title compounds closely resemble those for $(-)$ -4. The IR absorption for an α, β -unsaturated y-lactone

^{4,} We name **(-)-11** from 2-p-menthene rather than from cryptone **[I41** in order to emphasize the structural correlation of $(-)$ -11 with $(-)$ -4, $(-)$ -8b, 12, $(-)$ -14a, and $(-)$ -14b.

and the presence of an EtOH-group (NMR and loss of EtOH in MS) finally suggest the y-ethoxybutenolide mixture $(+)$ -14a/ $(-)$ -14b.

Close similarity of spectra of $(+)$ -14a and $(-)$ -14b does not allow us to assign which is which. However, both epimers must be artifacts of the ethanolic extraction, and the corresponding *y* -hydroxybutenolides are likely to be the naturally occurring precursors.

3.5. *Penlanpallescensin* $(= (+)-3-(5', 7'-Seco-2' (10')-pinen-7'-v)$ *methylfuran* $= (+)-$ 3-[2- *(2,2-Dimethyl-6-methylidenecyclohexyl)ethylJ(furan;* (+) - **15).** Though the 'H-NMR spectrum reveals a β -alkyl furan and a methylidene group, lack of isopropyl resonances indicates for penlanpallescensin a skeleton different from those discussed above. The compound must be bicyclic in order to account for the composition C_1 , H₂,O (MS, high resolution) and the presence of only one double bond (NMR spectra) besides the furan unsaturations. The MS fragmentation is reminiscent of that for pallescensin-1 ((-)-3) [16], which suggests⁵) losses from M^+ of a CH₃ (m/z 203), a furylmethyl (137), a C_9H_{15} (to leave a charged furylethyl fragment m/z 95), and a $C_{10}H_{17}$ group (to leave a charged furylmethyl fragment *mjz* 81).

 13 C- and ¹H-NMR spectra make now clear that a (3-fury) ethyl group is linked to a cyclohexane ring which bears also both a methylidene group *(AB* part of an *ABX* system, where $H - C(1')$ is the *X* part) and a gem-dimethyl group (s at 0.91 and 0.84 ppm). That the (3-fury1)ethyl group is attached to the cyclohexane ring in between the methylidene and gem-dimethyl groups is indicated by the change of the *ABX* pattern into an \overline{AB} pattern on irradiation in the methine region at 2.25 ppm.

Finally, biogenetic considerations also suggest structure **(+)-15.** However, with the aim to prove the structure beyond any doubt, the total synthesis of penlanpallescensin is under way.

3.6. *Prepenlanfuran* (= *(-)-(3 Z)-l-(3'-Furyl)-4,8-dimethylnona-3,7-dien-2-yl Acetate* $((-)$ **-17**). The MS did not reveal M^+ , and the peak at highest m/z (216) must

⁵) While low resolution, standard EI-MS allowed a correct structural assignment, the underlying phenomena are complex and could only be revealed by more advanced **MS.** Thus, both fragments *m/z* 95 and 81 were revealed at high resolution as 1:1 doublets for C_7H_{11}/C_6H_7O and C_6H_9/C_5H_5O , respectively. The hydrocarbon fragments have obscure origin, though impurities can he ruled out. **Also,** linked-scans (B/E) on *M+* only showed m/z 95 and 203 for the loss of the whole furanoid chain and a CH₃-group, respectively. Therefore, as all other evidence points to structure $(+)$ -15, fragmentations to give m/z 137 and 81 must be so fast as to occur in the ion source.

be interpreted as M^+ – AcOH (see 16) in order to account for NMR spectra. The whole set of spectral data allows us to propose structure **(-)-17** for prepenlanfuran. **A** key observation is an ABX system in the ¹H-NMR spectrum due to 2H–C(1) and H-C(2) with H-C(2) further coupled to H-C(3). This, and the presence of a β methylidenefuran group (MS fragments and NMR spectra) suggest fragment **A** (see **(-)-17).** Fragment **B** is suggested by two broad s for the CH,-groups and a broad *t* for $H-C(7)$. In fact, on irradiation at the CH₃-resonances, the broad *t* became a sharp *t*, indicating adjacency of H-C(7) to a CH,-group. MS fragmentation of the ion **16** at highest *m/z* suggests joining of fragments **A** and **B** to get the structure **(-)-17** for prepenlanfuran.

The (2)-configuration is indicated by the relatively low-field NMR resonances for CH₃-C(4). In fact, for (E)-configuration, values of $\delta(13_c)$ < 20 [15b] [15c].

With too little $(-)$ -17 at hand, attempts at determining the absolute configuration by degradation failed, which is not too surprising for allylic alcohol derivatives. The enantiospecific synthesis of prepenlanturan is being carried out [17].

4. Conclusions. - Similarity of structures, and the same absolute configuration at the isopropyl-bearing C-atom, suggest common biogenesis for the p-menthene-type sesquiterpenoids isolated from *D. fragilis.* A biogenetic scheme can be proposed where, starting from farnesol pyrophosphates $((E)$ -18a/ (Z) -18a) which are imagined to be first oxidized to linear furanosesquiterpenes, we can also account for the formation of both prepenlanturan $((-)-17)$ and penlanpallescensin $((+)$ -15, *Scheme 3*). However, the latter two products are best seen to originate from different geometric isomers of the furanosesquiterpene precursors. In fact, whilst, as usual in sesquiterpenoid biogenesis [18], **(+)-15** is best explained to originate from precursor **(E)-18b** (in order to have the side chain in the favourable equatorial position in the transition-state (E) -18b for cyclization), formation of $(-)$ -17 can be most economically conceived from precursor (Z) -**18b** *via* direct allylic oxidation to **19** *(Scheme 3).*

(E)-18b is the well known dendrolasin which has been isolated from insects [19] and which can be imagined to arise from (E) -farnesol-pyrophosphate $((E)$ -18a). In contrast, the hypothetical isomeric intermediate (Z) -18b is viewed here to be biogenetically derived from (Z) -farnesol pyrophosphate $((Z)$ -18a). This is a most unusual proposal as the only proved case of the involvment of (Z) -18a in sesquiterpenoid biogenesis concerns the plant product gossypol [18]. If we further postulate that (E) -18b and (Z) -18b or their precursors (E) -18a and (Z) -18a are equilibrated in the sponge, we can imagine a common biogenesis for all the sesquiterpenoids which have been isolated here from *D. fragilis (Scheme 3).* Here, $(-)$ -4 is viewed to originate from either (Z) -18b or (E) -**18b** *via* the allylic cation **20** and the triene **21.** Enzymatic epoxydation of **(-)-4** is then viewed to lead *via* 22 to products of $C(7)$ -oxidation $((-)-8b)$, or of both $C(7)$ - and C(1)-oxidation $(12)^6$, or, finally, of C(7)-extrusion $((-)-11;$ *Scheme 3*). Also, $(-)-4$ can be imagined to undergo enzymatic oxidation to γ -hydroxybutenolides⁷) which as masked aldehydes can give both $(+)$ -14a and $(-)$ -14b on standing in EtOH.

^{6,} Admittedly, formation of a diastereoisomeric mixture of diols such as **12** does not fit well our proposal of enzymatic reactions. Possibly, **12** are artifacts of non-enzymatic oxidations.

^{7,} *y* -Hydroxybutenolide terpenoids have already been isolated from other sponges belonging to the Dictyoceratida such as *Dysideu etheriu* [12] and *Spongia officinalis* [21].

Scheme 3 could also be straightforwardly extended to account for the formation of **7** and **(+)-6,** isolated from *Dysidea* sp. [13]. **(+)-6** may also be viewed as the biogenetic precursor of furodisinin **(23)** and furodisinin lactone **(24),** which have been isolated from Australian *Dysidea* spp. [131 and Bermudian *Dysidea etheria* [21], respectively.

Because of the unusual biogenetic proposals in *Scheme 3,* biosynthetic experiments with sponges of the genus *Dysidea* would be interesting. Though biosynthetic experiments with sponges have met limited success in the past, recent success with sponges of the family Verongida [22] stimulate to try also with the Dysideidae.

Finally, different sesquiterpenoids for *D. jiugilis* of different areas urge a taxonomic reexamination of these sponges, also in view of the notorious difficulty in Dysideidae identification, especially with non-fresh specimens. Related is the problem of whether the sesquiterpenoids come from the sponge cells or rather from its parasites or symbionts. To this concern D. *fragilis* (MONT.) of Brittany is known (C. *Levi*) to be parasitized by *Phormidium spongeliue (SCHULZE)* (Cyanophyceae). However, this parasite is common to many other Demospongiae as well [23], whilst the sesquiterpenoids described here are specific of *D. fragilis* of Brittany. Also, Cyanophyceae are not known to produce sesquiterpenoids.

We thank Dr. *E. L. Ghisalberti* for useful discussions, Mr. *A. Slomp* for excellent technical aid with the mass spectra, *CNR,* Bologna, for use of the 300 MHz NMR spectrometer, and the *Prouincia Autonoma* di *Trento. Assessorato Agricoltura, CNR,* and *MPI,* Roma, for financial support.

Experimental Part

1. *General Remarks.* Reverse-phase HPLC and silica-gel HPLC were carried out on a *Merck-LiChrosorb-* $RP-I8$ (7 µm) column (25 × 1 cm) and a *Merck-LiChrosorb-Si-60* (7 µm) column (25 × 1 cm), resp. IR and UV spectra were recorded with a *Perkin-Elmer-337* and *Beckman-DB-4* spectrometer. Polarimetric data were measured with a *fASC0-DIP-1x1* apparatus. NMR spectra were taken with either a *Varian-CFT2U* spectrometer (I3C-NMR at 20 MHz with a microprobe, 'H-NMR at 80 MHz) or a *Bruker-CXP-300* ('H-NMR at 300 MHz) spectrometer. Chemical shifts are given in ppm with respect to internal $Me₄Si$ (= 0 ppm) and coupling constants J in Hz. Multiplicities for ¹³C-NMR spectra were obtained by off-resonance decoupling. MS (EI) were obtained with either a home-made spectrometer built on a *ELFS-4-162-8-Extranuclear* quadrupole or a *VG-ZAB2F* spectrometer. Exact masses were measured by the peak-matching technique.

2. *Isolutions.* Our previous ethanolic extract of the sponge [9] was examined. The residue (20 **g)** from evaporation of the Et₂O extract (obtained from the residue of EtOH evaporation) was column chromatographed [9], first with petroleum ether and then with petroleum ether/Et₂O gradient elution *(Sect.2, Theor. Part).*

3. *Noroxopenlanfuran* $((-)-11)$. Colourless liquid, $[\alpha]_D^{20} = -91.0^{\circ}$ $(c = 0.79, \text{ CHCl}_3)$. UV (MeOH): 236 (8200). IR (film): 1675. ¹H-NMR (80 MHz, C₆D₆): 0.56, 0.68 (2d, J = 6.6, each 3H, 2 CH₃-C(8)); 1.46 *(m,* 2H-C(5)); 1.77 *(m,* H-C(8), H-C(4)); 2.22 *(m,* 2H-C(6)); 2.87 (br. **s,** CH,-C(3)); 5.91 *(m,* H-C(4')); 5.97 *(m,* H-C(2)); 6.91 *(m, H-C(5'))*; 7.06 *(m, H-C(2')*). Irr. at 1.46, *m* at 2.22 \rightarrow *AB* (2.04 and 2.28, *J_{AB}* = 17.4); irr. at 1.77, d at 0.56 and 0.68 \rightarrow 2 *s*, and *m* at 5.97 sharpened; irr. at 2.87, *m* at 7.06 \rightarrow dd ($J_{2,5'}$ = 0.9, $J_{2,4'}$ = 1.7), *m* at $5.91 \rightarrow dd$ (*J_{4.5}* = 1.7, *J_{4.2}* = 1.7), and *m* at $5.97 \rightarrow d$ (*J_{2.4}* = 1.0). On addition of Eu(fod)₃ (*C. Erba*), the *m* at 2.22 and 5.97 were shifted to lower field much more markedly than all other signals. ¹³C-NMR (20 MHz, C₆D₆): (d, C(4')); 121.3 (s, C(3')); 128.0 (d, C(2)); 140.5 (d, C(2')); 143.4 (d, C(5')); 165.7 (s, C(3)); 198.0 **(s,** C(1)). MS: 218 (100, *M+);* 203 (20, *M+* -Me); 175 (78, *Mi* - C3H7); 147 (47); 137 (16, *M'* -C5H,0); 109 (67); 84 (98); 81 (60, $C_5H_5O^+$). 18.4, 21.4 (2 *q,* C(9), C(10)); 22.9 *(1,* C(5)); 29.0 (d, C(8)); 31.8 *(t,* CH,-C(3)); 35.6 *(t,* C(6)); 43.5 *(d,* C(4)); 111.5

4. *Conversion of* $(-)$ -11 *into* $(-)$ -4. To a stirred solution prepared from Ph₃MePI (0.44 g, 1 mmol) in 5 ml of dry benzene and the equivalent amount of PhLi in Et₂O was added, under N_2 at r.t., $(-)-11$ (0.024 g). The mixture was stirred for 2 h, filtered, and evaporated. The residue was subjected to reverse-phase HPLC with MeCN/H₂O gradient elution. Fractions containing $(-)$ -4 were extracted with pentane and the extracts evaporated to give pure (-)-4 (0.017 g, 72%), $[\alpha]_0^2 = -52.0^\circ$ (c = 0.35, CHCl₁). NMR and MS: superimposable to those of naturally occurring $(-)$ -4.

5. *Acetoxydihydropenlanfuran* $((-)-8b)$. Colourless liquid, $[\alpha]_D^{20} = -7.5^{\circ}$ (c = 0.57, CHCl₃). UV (MeOH): 221 (2500). IR (film): 1725. ¹H-NMR (80 MHz, C₆D₆): 0.70, 0.83 (2 d, $J = 6.7$, each 3H, 2 CH₃-C(8)); 1.43 *(m,* 2H-C(6), 2H-C(5)); 1.71 **(s,** CH3CO); 1.96 *(m,* H-C(8), H-C(4)); 2.34 *(m,* H-C(1)); 2.96 (br **s,** CH2-C(3)); 3.98 (d, *f* = 6.8, 2H-C(7)); 5.46 (br. d, *J* = 3.6, H-C(2)); 6.1 1 *(m,* H-C(4')); 7.08 *(m,* H-C(5')); H-C(2') signal overshadowed by solvent. ¹H-NMR (CDCI₃): 7.34 (m, H-C(2')). Irr. at 2.34, br. d at 5.46 \rightarrow br. *s* and d at $3.98 \rightarrow s$; irr. at 2.96, furyl signals and br. d at 5.46 simplified; irr. at 1.96, d at 0.70 and 0.83 \rightarrow 2 s. ¹³C-NMR (20 MHz, C_6D_6): 17.5, 21.2 (2 q, C(9), C(10)); 20.1 (t, C(5)); 20.4 (q, CH₃CO), 23.8 (t, C(6)); 28.4 (d, C(8)); 31.5 (t, CH,-C(3)); 35.3 *(d,* **C(1));** 41.7 *(d,* C(4)); 67.3 *(f,* C(7)); 111.6 *(d,* C(4')); 123.5 **(s,** C(3')); 125.4 *(d,* C(2)); 140.0 *(4* C(2')); 141.8 **(s,** C(3)); 143.0 *(d,* C(5')); 170.0 *(s,* C=O). MS: 276 (3, *W+);* 233 (1); 216.1434 f 0.008 (34, $C_{15}H_{20}O$, calc. 216.1514, M^+ - AcOH); 201 (3; also from B/E on 216; 216 - Me); 173 (75; also from B/E on 216; 216 - C₃H₇); 135 (69, 216 - C₅H₅O); 91 (36, C₇H₇⁺); 81 (83, C₅H₅O⁺); 43 (100, C₃H₇⁺).

6. *Conversion of* $(-)$ *-4 into* $(-)$ *-8b/* $(-)$ *-9b/10b.* To a solution of $(-)$ -4 $(0.065 \text{ g}, 0.3 \text{ mmol})$ in dry THF (10 ml) were added, in the given order, NaBH₄ (0.0035 g, 0.09 mmol) and, dropwise under N₂ and stirring at r.t., BF_3 . Et₂O (0.12 mmol). After 2 h, a few drops of H₂O, aq. NaOH (0.356 mmol), and 30% H₂O₂ (40 µl) were added. The mixture was kept at 40° for 1 h and then extracted (3 \times) with Et₂O. The solvent was evaporated and the residue subjected to reverse-phase HPLC with MeCN/H,O gradient elution to give, in the order of increasing elution times, **10a** (as epimeric mixture, 0.007 g), **9a** (0.012 g), and **8a** (0.009 g). Acetylation with Ac,O/pyridine (at 0" for **10a** and at r.t. for **9a** and **8a)** and HPLC purification with MeCN/H,O 7:3 gave in high yields the epimeric mixture **lob, (-)-9b,** and **(-)-8b,** resp. *(I S*,4R*)-3-(3'-Furyl)methyl-2-p-menthen-7-o1(9a):* Colourless liquid. ¹H-NMR (80 MHz, C₆D₆): 0.73, 0.83 (2 *d, J* = 6.9, 2 CH₃-C(8)); 1.2-2.2 (series of *m*, 8H); 2.99 (br. s, CH₂-C(3)); 3.27 *(d, J* = 6.2, 2H-C(7)); 5.51 (br. s, H-C(2)); 6.14 *(m, H-C(4'))*; 7.09 *(m, H-C(5')*); signal for $H-C(2')$ swamped out by solvent.

 $(IR^*, 4R^*)$ -3- $(3'-Furyl)$ methyl-2-p-menthen-7-ol **(8a)**: Colourless liquid. ¹H-NMR (80 MHz, C₆D₆): 0.73, 0.86 (2 *d, J* = 6.7, 2 CH,-C(8)); 1.46 *(m,* 2H-C(5), 2H-C(6)); 1.96 *(m,* H--C(l), H-C(4), H-C(8), OH); 3.00 (br. s, CH2-C(3)); 3.30 *(d, J* = 7.4, 2H-C(7)); 5.50 (br. *d, J* = 4.0, H-C(2)); 6.13 *(m,* H-C(4')); 7.08 *(m,* $H-C(5')$); signal for $H-C(2')$ swamped out by solvent.

(I R*,4 *R*)-3-(3'Furyl)methyl-3-hydroxy-p-menth-7-o1(10a):* Colourless liquid. 'H-NMR (80 MHz, C,D,): 0.88, 0.98 (2 *d, J* = 7.0, 2 CH₃-C(8)); 1.0-2.2 (series of *m*, 11H); 2.26, 2.98 $(AB, J_{AB} = 15.0, CH_2-C(3))$; 3.50 *(AB of ABX,* $J_{AB} = 10.0$ *,* $J_{AX} = 7.1$ *,* $J_{BX} = 5.8$ *, 2H-C(7)); 6.05 <i>(m, H-C(4')); 7.08 <i>(m, H-C(5'))*; signal for $H-C(2')$ swamped out by solvent.

 $(-)$ -(IS*,4R*)-3-(3'-Furyl)methyl-2-p-menthen-7-yl Acetate **((-)-9b):** Colourless liquid, $[\alpha]_0^{20} = -107.0^\circ$ $(c = 0.40, CHCl₃)$. ¹H-NMR (80 MHz, C₆D₆): 0.69, 0.80 (2 *d, J* = 6.7, 2 CH₃-C(8)); 1.2-2.2 (series of *m*, 7H); 1.71 (s, CH₃CO); 2.95 (br. s, CH₂-C(3)); 3.93 *(d, J* = 6.6, 2H-C(7)); 5.44 (br. s, H-C(2)); 6.11 *(m, H-C(4')*); 7.07 *(m, H-C(5'))*; signal for H-C(2') swamped out by the solvent. ¹³C-NMR (20 MHz, C₆D₆): 16.0, 21.3 (2 *q,* C(9), C(10)); 20.7 *(t,* C(5)); 20.5 *(q,* CH3CO); 26.0 *(t.* C(6)); 27.7 *(d,* C(8)); 31.0 *(t,* CH*-C(3)); 36.1 *(d,* C(1)); 42.0 *(d, C(4))*; 68.5 *(t, C(7))*; 111.6 *(d, C(4')*); 123.5 *(s, C(3')*); 126.6 *(d, C(2)*); 139.9 *(d, C(2')*); 141.2 *(s, C(3)*); 143.0 *(d,* C(5')); 170.0 *(s,* C=O). MS: 216 (38, *Mt* - **AcOH);** 173 (91, 216 -- C3H7); 135 (34, 216 - C,H,O); 91 $(37, C_7H_7^+); 81 (100, C_5H_5O^+).$

Synthetic (-)-8b: Colourless liquid, $[\alpha]_D^{20} = -7.8$ " (c = 0.55, CHCl₃). All spectra superimposable to those for naturally occurring $(-)$ -8b.

(I *R*,4R*)-3-(3'-Furyl)methyl-3-hydroxy-p-menth-7-yl Acetate* **(lob):** GC **of 10b** on *OV-I* capillary column gave two peaks in a 5:l ratio, the shorter retention time corresponding to the more abundant epimer. ¹H-NMR (80 MHz, C_6D_6): 0.88 *(d, J* = 6.7, CH₃-C(8)); 0.97 *(d, J* = 7.0, CH₃-C(8)); 1.0-2.2 (series of *m*, 10H); 1.69 (s, CH3CO); 2.17, 2.93 *(AB, JAB=* 15.0, CH2-C(3) of one epimer); 2.83, 2.76 *(AB, JAB=* 15.0, CH₂-C(3) of other epimer); 4.12 *(AB* of *ABX*, $J_{AB} = 10.0$, $J_{AX} = 7.6$, $J_{BX} = 7.0$, 2H-C(7) of one epimer); 4.12 *(d, J* = 7.0, 2H-C(7) of other epimer); 6.04 *(m,* H-C(4')); 6.98 *(m,* H-C(5')); 7.10 *(m,* H-C(2')). MS: 216 (2, M^+ – **AcOH** – **H**₂O); 173 (8, 216 – C₃**H**₂); 91 (27, C₇**H**₇⁺); 81 (100, C₅**H**₅O⁺).

7. *Mixture of Epimeric 3-(3'-Furyl)methyl-2-p-menthene-1,7-diols (= Dihydroxypenlanfurans; 12). a) Naturally Occurring* **12:** Colourless liquid. IR (film): 3350. 'H-NMR (80 MHz, CDCI,): 0.73, 0.77, 0.92, 0.95 (4 *d, ^J*= 6.7, 6H, Me of both epimers); 1.0-2.5 (series of *m,* 8H); 3.12 (hr. **s,** 2H, CHz-C(3)); 3.43 (br. s, 2H, 2H-C(7)); 5.17, 5.63 (IH, H-C(2) of both epimers); 6.18, 6.24 *(m.* IH, H-C:(4') of both epimers); 7.23 *(m,* **IH,** H-C(5')); 7.34 (m, 1H, H-C(2')). **MS**: 232 (17, $M^+ - H_2O$); 219 (47, $M^- - CH_2OH$); 201 (4, 219 - H₂O); 189 (14, 219 – C₃H₇); 91 (30, C₇H₇⁺); 81 (100, C₅H₅O⁺); 43 (93, C₃H₇⁺).

b) *Synthetic* **12** *from* $(-)$ -4: see *Exper.* 9 below.

8. Acerylation of **12. To 12** (0.010 g) was added, at *0".* excess AczO and pyridine (2 drops). After 1 h, H,O was added to the mixture and the latter extracted with CH₂Cl₂. The org. layer was washed with H₂O/NaCl, dried, and evaporated, and the residue was subjected to HPLC with hexane/i-PrOH 97:3 to give (-)-13b (0.004 g) as the first eluted compound, followed by $(-)$ -13a (0.005 g) . $(-)$ -13a: Colourless liquid, $[\alpha]_D^{20} = -39.2^\circ$ $(c = 0.67, \text{CHCl}_3)$. IR (film): 3400, 1725. ¹H-NMR (80 MHz, CDCl₃): 0.74, 0.91 (2 *d, J* = 6.6, 2 CH₃-C(8)); 1.0-2.2 (series of *m*, 7H); 2.10 (s, CH₃CO); 3.11 (br. s, CH₂-C(3)); 4.02, 3.96 *(AB, J_{AB}* = 11.3, 2H-C(7)); 5.43 *(m,* H-C(2)); 6.23 *(m.* H-C(4')); 7.20 *(m,* H-C(5')); 7.33 *(m.* H-C(2')). 13C-NMR (20 MHz, C,D,): 16.8, 20.8 (2 *9.* C(9), C(10)); 19.3 *(t.* C(5)); 20.5 *(q,* CH3CO); 27.9 *(d,* C(8)); 30.9 *(t.* C(6)); 31.9 *(t,* CH,-C(3)); 41.7 *(d,* C(4)); 69.7 *(1,* C(7)); 70.2 **(s,** C(1)); 111.7 *(d,* C(4')); 122.9 *(s,* C(3')); 128.9 *(d,* C(2)); 140.1 *(d,* C(2')); 143.1 *(d,* C(5')); 143.1 (3, C(3)); 170.8 *(s,* CEO). MS: 274 (2, *M'* - H2O); 232 (11, *M+* - AcOH); 219 (7); 214 (38, 232 – H₂O); 189 (22, 232 – C₃H₇); 171 (100, 274 – AcOH – C₃H₇); 129 (18); 128 (47); 91 (16, C₇H₇⁺); 81 (46, $C_5H_5O^+$).

(-1-13b: Colourless liquid, *[a]',"* = -54.1" *(c* = 0.44, CHCI3). **UV** (MeOH): 220 (2700). IR (film): 3400, 1725. ¹H-NMR (80 MHz, CDCI₃): 0.77, 0.94 (2 *d, J* = 6.7, 2 CH₃-C(8)); 1.0-2.2 (series of *m*, 7H); 2.09 (s, CH3CO); 3.16, 3.10 *(AB, JAB=* 15.5, CH,-C(3)); 3.99, 3.97 *(AB, JAB=* 11.5, 2H-C(7)); 5.53 *(m,* H-C(2)); 6.17 *(m.* H-C(4')); 7.19 *(m,* H-C(5')); 7.32 *(m,* H-C(2')). l3C-NMR (20 MHz, C6D6): 16.3, 20.9 (2 *q,* C(9), C(10)); 17.5 *(t, C(5))*; 20.5 *(q, CH₃CO)*; 27.6 *(d, C(8))*; 30.8 *(t, C(6))*; 32.2 *(t, CH₂-C(3))*; 42.3 *(d, C(4)*); 68.9 *(s, C(1))*; 71.5 *(1,* C(7)); 111.5 *(d,* C(4')); 123.1 (s, C(3')); 127.9 *(d,* C(2)); 140.0 *(d,* C(2')); 143.1 *(d,* C(5')); 144.7 (s, C(3)); 170.6 (s, C=O). MS: 274 (2, $M^+ - H_2O$); 232 (23, $M^+ - AcOH$); 214 (15, 232 - H₂O); 189 (51, 232 - C₃H₇); 171 (60, 274 - C₃H₇ - AcOH); 129 (15); 128 (48); 91 (33, C₇H₇⁺); 81 (100, C₃H₅O⁺).

9. *Conoersion of* **(-)-4** *into* **(-)-13a** *and* **(-)-13b.** To a solution of **(-)-4** (0.39 mmol) in 3 ml of pyridine was added the equimolar amount of $OsO₄$ (0.10 g) at 0°. The mixture was stirred for 2 h. Then, aq. NaHSO₃ (0.18 g) was added and the mixture stirred for further 30 min and extracted with CH₂Cl₂. The org. layer was dried over Na₂SO₄ and evaporated. To the residue were added dry pyridine and excess of Ac₂O at -15° . After 1h at -15° , the mixture was washed with aq. sat. NaCl and extracted with CH₂Cl₂. The org. layer was evaporated and the residue subjected to column chromatography on silica gel (10 g; light petroleum ether/Et,O gradient elution). Further purification by HPLC with hexane/i-PrOH 97:3 afforded $(-)$ -13b, $[\alpha]_{D}^{20} = -49.6^{\circ}$ $(c = 0.58, CHCl₃),$ as the first eluted compound and $(-)$ -13a, $[\alpha]_0^{20} = -41.2^\circ$ $(c = 0.92, CHCl₃),$ in a 3:4 ratio (overall yield 30%), together with unreacted $(-)$ -4 (0.01 g) . Products of hydroxylation of $(-)$ -4 at both double bonds were also formed, but they have not been investigated. Spectra for synthetic **(-)-13a** and **(-)-13b** proved superimposable to the spectra the more polar and the less polar acetate, resp., obtained by acetylation of naturally occurring **12** (see *Exper.8).*

10. *Pen!anpullescensin* ((+)- **15).** Colourless liquid. *[a]\$* = +6.0 (c = 0.3 CHCI,). UV (MeOH): 225 (6000). 1R (film): 3063, 1624, 875. 'H-NMR (80 MHz, CDCI,): 0.84, 0.91 (2 **s,** 2 CH,-C(6')); 1.2-2.4 (series of *m,* 1 IH, 5 CH2, H-C(I')); 4.58, 4.80 (2 *m,* 2H-C(10')); 6.26 *(m,* H-C(4)); 7.20 *(m,* H-C(5)); 7.34 *(m,* H-C(2)). I3C- *(t,* C(5')); 26.4, 28.5 (2 *q,* 2 Me); 53.8 *(d,* C(1')); 109.5 *(1,* C(l0')); 111.2 *(d,* C(4)); 121.9 *(s,* C(3)); 139.1 *(d,* C(2)); 142.9 *(d, C(5))*; 146.5 *(s, C(2'))*; The signal for C(6') could not be detected. MS: 218.1600 \pm 0.008 (60, C₁₃H₂₂O, calc. 218.1670; M^+), 203 (25; also from B/E on 218; M^+ - Me); 137 (20, M^+ - 81); 95 (60; doublet for C_7H_{11} (95.0818 \pm 0.008, calc. 95.0860) and C_6H_7O (95.0440 \pm 0.008, calc. 95.0496)); 81 (100; doublet for C_6H_9 $(81.0665 \pm 0.008, \text{ calc. } 81.0742)$ and $C_5H_5O (81.0303 \pm 0.005, \text{ calc. } 81.0340)$). NMR (20 MHZ, C6D6): 23.6 *(1,* C(4') or C(7')); 24.0 *(1,* C(7') or C(4')); 27.1 *(t,* C(3')); 32.6 *(t,* CH,-C(3)); 36.4

11. *Prepenlanfurun* **((-1-17).** Colourless liquid. *[a]g* = -8.5' (c = 0.64, CHCI,). UV (MeOH): 218 (4000). ¹H-NMR (300 MHz, C₆D₆): 1.55, 1.63 (2 br. s, 2 CH₃-C(8)); 1.57 *(d, J* = 1.3, CH₃-C(4)); 1.66 *(s, CH₃CO)*; $J_{AX} = J_{BX} = 6.4, 2H-C(1)$; 5.15 (br. t, J = 6.7, H-C(7)); 5.21 (br. d, J = 9.3, H-C(3)); 5.90 (X of ABX, as *td*, $J = 6.4, 9.3, H - C(2)$; 6.15 *(m, H-C(4')); 7.09 (m, H-C(5'), H-C(2')*). **Irr.** at 5.90, $ABX \rightarrow AB$ ($J_{AB} = 14.8$); irr. CH3CO); 23.3 *(q,* CH,-C(4)); 26.9 *(t,* C(6)); 31.1 *(t,* C(5) or C(1)); 32.8 *(t,* C(1) or C(5)); 70.7 *(d,* C(2)); 111.9 *(d,* C(4')); 120.7 *(s,* C(3')); 124.5 (2 *d,* C(3), C(7)); 131.7 (s, C(8)); 140.5 *(d,* C(2')); 141.0 (s, C(4)); 142.9 *(d,* C(5')); 169.4 **(s,** C=O). MS: 216 (4, *M'* - AcOH); 201 (2, 216 - Me); 195 (4, *M'* - 81); 173 (4); 153 (4); 147 (6); 135 (100); 95 **(20);** 93 (22); 81 (19). 1.97 *(m,* HpC(6)); 2.11 *(m,* H-C(6), H-C(5)); 2.29 *(M,* H-C(5)); 2.57, 2.69 *(AB* of *ABX, JAB=* 14.8, at 5.21, *td* at 5.90 \rightarrow *t* (*J* = 6.4). ¹³C-NMR (20 MHz, C₆D₆): 17.6 (*q*, C(9)); 25.7 (*q*, CH₃-C(8)); 20.8 (*q*,

12. *Penlanbutenolide* (+)- **14a)** *and the More Polar 4-Epipenlunbutenolide* (-)- **14b).** MS (epimeric mixture): 276.1748 \pm 0.005 (29, C₁₇H₂₄O₃, calc. 276.1725, M⁺); 261 (3; also from B/E on 276; M⁺ - Me); 248 (3, *M*⁺ - CO); 233 (25; also from B/E on 276; *M*⁺ - C₃H₇); 230 (35; also from B/E on 276; *M*⁺ - C₂H₃OH); 215 (20, 261 - C,H,OH); 204 (20; also from **B/E** on 276; M'-72); 187 (70); 159 (55); 91 (100, C7H7+).

 $(+)$ -14a: Colourless liquid. $[\alpha]_0^{20} = +22.8^\circ$ (c = 0.07, CHCl₁). UV (MeOH): 238 (11,000). IR (film): 1780. ¹H-NMR (80 MHz, C₆D₆): 0.68, 0.82 (2 *d, J* = 6.7, 2 CH₃-C(8')); 0.96 (*t, J* = 7.0, CH₃CH₂); 1.46 (*m*, 2H-C(5')); 1.86 *(m.* H-C(4'), H-C(8')); 2.17 *(m.* 2H-C(6')); 2.99, 2.77 *(AB, JAB* = 15.5, CHz-C(3')); 3.59, 3.27 $(AB \text{ of } ABX_3, J_{AB} = 9.5, J_{AX} = J_{BX} = 7.0, \text{ CH}_3CH_2$); 4.79 (br. *s*, 2H-C(7')); 5.17 *(m, H-C(4))*; 5.99 (br. *s*, H-C(2')); 6.18 (m, H-C(2)); irr. at 2.88, m at 6.18 and 5.17 \rightarrow 2 *d*($J = 1.2$). ¹³C-NMR (20 MHz, C₆D₆): 15.1 (*q*, *(d, C(4'))*; 65.4 *(t, CH₃CH₂)*; 101.4 *(d, C(4)*); 110.5 *(t, C(7')*); 129.8 *(d, C(2')*); 143.3 *(d, C(3'), C(2)*); the signal for C(1) could not be detected. CH₃CH₂); 18.0, 21.4 (2 q, C(9'), C(10')); 23.3 (t, C(5')); 28.8 (t, C(6')); 29.0 (d, C(8')); 31.4 (t, CH₂-C(3')); 42.9

(-)-14b: Colourless liquid. [a]: = *-5.0"* **(c** = 0.20, CHCI,). **UV** (MeOH): 238 (11,000). IR (film): 1775. ¹H-NMR (80 MHz, C₆D₆): 0.66, 0.78 (2 *d, J* = 6.3, 2 CH₃-C(8')); 0.95 *(t, J* = 7.0, CH₃CH₂); 1.47 *(m,* 2H-C(5')); 1.8 *(m,* H-C(4'), H-C(8')); 2.16 *(m.* 2H-C(6')); 3.03, 2.79 *(AB, J,,* = 15.5, CH2-C(3')); 3.59, 3.27 *(AB of ABX₃,* $J_{AB} = 9.9$ *,* $J_{AX} = J_{BX} = 7.0$ *, CH₃CH₂); 4.80 <i>(br. s, 2H-C(7'))*; 5.20 *(m, H-C(4))*; 6.01 *(br. s,* H-C(2')); 6.17 *(m, H-C(2))*. ¹³C-NMR (20 MHz, C₆D₆): 15.1 *(q, CH*₃CH₂); 17.9, 20.7 (2 *q, C(9')*, C(10')); 23.3 (I, C(5')); 28.8 *(t.* C(6')); 29.0 *(d,* C(8')); 31.4 *(L,* CH,-C(3')); 42.8 *(d,* C(4')); 65.4 *(t,* CH3CH2); 101.5 *(d,* C(4)); 110.4 *(I.* C(7')): 129.8 *(d,* C(2')); 142.7 **(s,** C(3'), and *d,* C(2)); the signal for C(1) could not be detected.

REFERENCES

- [l] *P. R. Bergyuist* & *R. J. Wells,* in 'Marine Natural Products ~ Chemical and Biological Perspectives', Vol. V, ed. P. **J.** Scheuer, Academic Press, New York, 1983, p. 1.
- [2] a) G. *Cimino, P. De Lucu, S. De Stefano* & *L. Minule,* Tetrahedron *31,* 271 (1975); b) *Y. Kashman* & *M. Zuiely,* Tetrahedron Lett. *1979,* 3879.
- [3] *R.P. Walker* & *D.J. Fuulkner, J.* Org. Chem. *46,* 1098 (1981).
- [4] **S.** *P. Gunasekera* & *F. J. Schmifz,* **J.** Org. Chem. *48,* 885 (1983).
- *[5]* a) *J. E.* Hochlowski, *R.P. Walker,* C. *Ireland* & *D. J. Fuulkner, J.* Org. Chem. *47,* 88 (1982); b) *R. W. Dunlop. R. Kuzlauskas, G. March, P. T. Murphy* & *R. J. Wells,* Austr. *J.* Chem. **35,** 95 (1982).
- [6] a) *L. Minale.* in 'Marine Natural Products Chemical and Biological Perspectives', Val. I, ed. P. J. Scheuer, Academic Press, New York, 1978, p. 175; b) *L.* Minule, G. *Cimino, S. De Stefano* & *G. Sodano,* in 'Progress in the Chemistry of Organic Natural Products'. Vol.33, eds. W. Herz, H. Grisebach and G.W. Kirby, Springer Verlag, Wien, 1976, p. I.
- [7] *T. Matsumoto* & *S. Usui,* Chem. Lett. *1978.* 105.
- [XI *F. J. Schniitz, V. Lakshmi, D. R. Powell* & *D. van der Helm.* **J.** Org. Chem. *49,* 241 (1984).
- [9] *G. Guella, A. Guerriero, P. Truldi,* & *F. Pietra,* Tetrahedron Lett. *24,* 3897 (1983).
- [lo] G. *Schulte, P.J. Scheuer* & *0. J.* Me-Connelf, Helv. Chim. Acta 63, 2159 (1980).
- 1111 *D. Raulais* & *D. Bzllet,* Bull. Sac. Chim. Fr. *1970,* 2401.
- [I21 *R. Kazluuskas. P. T. Murphy* & *R. J. Wells,* Tetrahedron Lett. *1978,* 4949.
- **[I31** *R. Kuzlauskas. P. T. Murphy, R. J. Wells, J. J. Duly* & *P. Schonholzer,* Tetrahedron Lett. *1978,* 4951.
- [I41 Beilstein 7, **TV,** Springer Verlag, Berlin, p.274.
- **IlS]** a) *F. W. Wahrli* & *T. Wirthlin,* 'Interpretation of Carbon-I3 NMR Spectra', Heyden, London, 1978; b) *P. A. Couperus. A. D.* H. Clague & *J. P.* C.M. *van Dongen,* Org. Magn. Reson. *8,* 4266 (1976); c) *J. W. de* Haan & *L. J. M. van de Ven.* ibid. *5,* 147 (1973).
- 1161 *G. Cimino, S. De Stefano, A. Guerriero* & *L. Minale,* Tetrahedron Lett. *1975,* 1417.
- [17] G. Guella, M. Cavazza, A. Guerriero & F. Pietra, Helv. Chim. Acta 67, 1248 (1984).
- [I81 *D. E. Cane.* in 'Biosynthesis of Isoprenoid Compounds', Vol.1, eds. **J.** W. Porter and S.L. Spurgeon, J. Wiley, New York, 1981.
- [19] *G.A. Kraus* & *P. Gottschalk,* J. Org. Chem. *48,* 5356 (1983).
- [20] G. *Cimino, S. De Stefuno* & *L. Minaie,* Experientia 30, 18 (1974).
- [21] *S.* H. *Grode* & *J.* H. *Curdellina 11,* **J.** Natl. Prod. *47,* 76 (1984).
- [22] *A. A. Tymiak* & *K. L. Rinehart,,jr.,* **J.** Am. Chem. Sac. 103, 6763 (1981).
- [23] *M. Sarà & J. Vacelet, in 'Traité dc Zoologie', ed. P.P. Grassé, Masson, Paris, 1973, p.462.*